

Electricity is the presence of a flow of electrons within or between substances.

Insulators and Conductors

rs Semic	emiconductors Conductors Superconductors Increasing conductivity
s tics per ed ne er	Any metals water vinegar high salt concentrations

The Electrostatic Series

- Human hands (usually too moist, though) Very positive
 Rabbit Fur
- Glass
- Human hair
- Nylon
- Wool
- Fur • Lead
- Silk
- Aluminum
- Paper
- Cotton
- Steel Neutral Wood
- Amber
- Hard rubber
- · Nickel, Copper
- Brass, Silver
- Gold, Platinum
- Polyester
- Styrene (Styrofoam)
- Saran Wrap
- Polyurethane
- Polyethylene (like Scotch Tape)
 Polypropylene
- Vinyl (PVC)
- Silicon
- Teflon Very negative

Ways to transfer a charge:

1. Friction

caused by rubbing

2. Conduction

also known as charging by contact

3. Induction charging without contact

1. Friction

Static electricity: Occurs when a build up of electric charge remains in one place.

Van de Graaff Generator

			—
			—
			—
			—
			—
			—

Photocopiers

- 1. Lamps light up the original
- 2. The corona wire charges the selenium belt so it's positive (+)
- 3. The light that hits the selenium causes conduction. The dark spots (images) remain insulators and are comparatively positive.
- 4. The toner particles are plastic and negatively charged. They are attracted to the negative image.
- 5. A corona wire charges the paper to make it positive (+) and the toner particles(-) jump to the paper(+).
- 6. The fuser heats the toner particles and they melt to the paper.

		-

Fabric Softener

- As clothes tumble in the dryer, electrons are lost and gained by the various materials
- The opposite charges attract, creating STATIC!
- Bounce sheets help redistribute the electrons so that all materials act alike and have the same charge
- NO STATIC!

Lightning!

http://science.howstuffworks.com/lightning.htm

- During an electrical storm, electrons pool at the bottom of a cloud
- The electrons on Earth are repelled deeper into the earth, resulting in a positive charge near the surface
- Opposites attract- Step leaders of electrons take the path of least resistance to the earth and streamers of positive charges reach up to meet them

Ways to transfer a charge:

1. Friction

caused by rubbing

2. Conduction

also known as charging by contact

3. Induction

charging without contact

2. Conduction

- 2a) The rod is negatively charged, the metal sphere is neutral
- 2b) The rod repels the electrons in the sphere
- 2c) Conduction allows electrons to migrate to the sphere
- 2d) The electrons are balanced, but the sphere is now negatively charged

Ways to transfer a charge:

1. Friction caused by rubbing

2. Conduction

also known as charging by contact

3. Induction charging without contact

3. Induction

- 3a) Neutral metal sphere which has been grounded.
- 3b) A negatively charged rod approaches the metal sphere, repelling the electrons in the metal sphere down the grounding wire 3c) The wire is cut so electrons can't fill back in.
- 3d) The rod is removed. The sphere is positively charged.

Grounding or Discharging

• grounding or discharging something means you make a pathway available for a surplus of electrons to escape into the ground

Electroscope

- if the charging rod is positively charged, it will attract electrons from below
- if the electrons leave the bottom of the electroscope, there will be a separation of charge and it will become positive at the bottom
- if both leaves are positive, they will repel

What would happen if the rod was negatively charged?

Is this an example of conduction, or induction?

What would happen if I took the rod away?

What would happen if I touched the electroscope with the positive rod for a few seconds, then took it away?

What would happen if I touched the electroscope with the positive rod for a few seconds, then took it away, then touched it with my hand?

Current Electricity is electric charge that moves from a source of electrical energy in a controlled path through an electric circuit

All circuits have:

Cells and Batteries

<u>|+</u> Battery =

Cells take chemical energy and convert it to electrical energy

Circuit terminology:

- Volts- the pressure pushing electrons through the circuit
- Current- the amount of electrons flowing through the circuit
- Resistance—the ease with which the electrons can flow through a circuit

Voltage

low (low drop)

high (high drop)

Current

low (less water)

high (more water)

Resistance

low (nothing in way)

high (lots in the way)

Ohm's Law

Resistance of some electrical loads

Find the missing value

Electrical Load	Voltage Drop (V) volts	Current (I) amperes	resistance (R) ohms
flashlight bulb	6	0.25	24
coffee grinder		1.2	100
food dehydrator		4.6	26
toaster oven	120		8.6
water heater	240	18.75	
60 W light bulb	120	0.5	

$$V = IR \qquad I = V$$
volts (v)
$$R$$

$$R = V$$
ohms(Ω)

Series and Parallel Circuits

Why do lights in series dim?

Why don't lights in Parallel dim?

Series

 the same electrons must supply the energy to light TWO light bulbs

Parallel

- different electrons go through each light bulb
- they can give all of their energy to the light bulb

Which circuit will be brighter?

-	
	
<u> </u>	<u></u>

Your House

Sources of Energy

- 1. Fossil Fuels
- combustion of coal, gas, petroleum

- plenty
- cheap

- acid rain
- global warming

Sources of Energy

- 2. Nuclear
- breaking atoms into pieces

- kind of environmentally friendly
- efficient production

- expensive to build
- nuclear wastes dangerous
- dangerous if uncontrolled
- non renewable U

Sources of Energy

- 3. Hydroelectric
- energy created from water

- renewable
- E friendly
- efficient
- accessible

- requires flow of water
- affects ecosystems

Sources of Energy

- 4.Solar
- converting light

- must be sunny
- not efficient

• converting turbine energy

- renewable
- E friendly

- must be windy
- not efficient
- expensive to run

Sources of Energy

- 6. Geothermalusing heat from earth's core

- renewable
- E friendly

- must have good location
- not efficient

